One of my customers is having fun with one of their own customers. My customer uses Digi gateways running a Python application to collect hourly tank levels, which are fetched by cellular once per day. The tanks hold 250-gallons of a chemical additive which is injected at a variable rate into crude oil pipelines. Small battery-powered ultrasonic level sensors (www.massa.com) push the last 8 hourly samples every few hours using wireless IEEE 802.15.4 (aka Zigbee). The end customer's goal is to forecast when the tanks need to be refilled ... and I don't mean just receive an alarm when it is running low, they literally want to plan truck routes in advance.
Fun stuff.
The problem is that one of the pilot sites has bad cell coverage, meaning many days the central system cannot upload the log. Of course the data eventually it all uploads since it is held for over a month. Now, never mind that this system sits down in a dry wash (a small valley), the end-user says "Hah, that's because carrier A*** stinks; we all love carrier S****." My customer does not want to mix carriers - especially since negotiated pricing between the two in question is so different.
So remember that "coverage" for fixed RTU must be viewed differently from "coverage" for mobile uses.
For a mobile device (or user) "coverage" is defined by the probability that a valid carrier connection will be available as the device moves around. Thus the number of towers (etc) is important, and if there is no signal in one spot, then hopefully will be one a mile or two away.
Unfortunately, our little RTU bolted to a power pole in that gully won't be moving a mile or two ever. So in the end, "coverage" for a fixed device is defined only by the tower(s) which can be seen. So the carrier with the best cell-phone coverage might not be the best carrier to support a particular fixed RTU.
The first step will be to move the RTU up out of the gully, which is easy since the data signals are all wireless and power can be tapped from any of the privately owned power poles. Probably carrier A*** (stinky or not) will work fine once the RTU moves. As plan B and make the end-customer feel listened to, a S****-based RTU will be placed on the same pole as the relocated A*** one.
Could they run out a long external antenna? Sure, they could. But why bother? Put the RTU where it has a nice signal. Even in 2 or 3 store buildings we suggest customers put the cellular router up in the roof-area and run the Ethernet UTP it's 100 meters instead of trying to deal with the signal loss in long antenna cables. We even have customers using 900Mhz Ethernet bridges to link a cellular router placed where it must be placed back to the Ethernet devices which want access.
Worst case, a directional yagi antenna could be used, however you need to understand that cell towers are routinely turned off without warning. The carriers are truly geared towards mobile users who expect bad signals in some places. Towers (or the active elements) also move. Most of the cell towers you see along the highway work like strip-malls; a company owning the tower and supplying power leases tower space to a mix of carriers. This allows everyone to be flexible.
So prematurely locking down a cellular device to a single tower with a directional antenna can cause future problems since it will not see other weaker towers should the targeted tower be turned off or even moved.
No comments:
Post a Comment